Laser tweezers Raman spectroscopy potential for studies of complex dynamic cellular processes: single cell bacterial lysis.
نویسندگان
چکیده
The potential of laser tweezers Raman spectroscopy (LTRS) to study complex and dynamic cellular processes was investigated on the model of single E. coli cells lysed (1) from "outside" with egg white lysozyme and (2) from "within" by temperature-induced temperate bacteriophage lambdacI857. The two lysis processes differed in the final outcome (incomplete vs complete cell lysis) as revealed by the dynamic laser light scattering and exhibited distinctive dynamic Raman spectra changes. The technique enabled for the first time at the cellular level to observe and quantify real time interaction of lysozyme with E. coli cells, "visualize" a side effect of the process due to the presence of EDTA, and correlate the process of cell wall disruption, as evidenced by the onset and development of asymmetric speckle scattering patterns, with release/escape of intracellular material (ribosomes, nucleic acids, proteins, etc.) quantified by the intensity changes of Raman signatures. Raman spectra changes observed during the lysis from "within" suggest alleged production of heat shock proteins are consistent with the occurring synthesis of phage-related proteins and are in good agreement with the calculated potential contribution of the above proteins to the Raman spectra. It was also established and validated that the contribution of cellular DNA to the Raman spectra of bacterial cells is negligible compared to RNA. The results open new venues for LTRS research and strongly suggest that LTRS has a great potential especially in investigation of real-time processes.
منابع مشابه
Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy.
We report on a rapid method for reagentless identification and discrimination of single bacterial cells in aqueous solutions using a combination of laser tweezers and confocal Raman spectroscopy (LTRS). The optical trapping enables capturing of individual bacteria in aqueous solution in the focus of the laser beam and levitating the captured cell well off the cover plate, thus maximizing the ex...
متن کاملUptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy
Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on b...
متن کاملNon-destructive Analysis of the Nuclei of Transgenic Living Cells Using Laser Tweezers and Near-infrared Raman Spectroscopic Technique
Transgenic cell lines of loblolly pine (Pinus taeda L.) were analyzed by a compact laser-tweezers-Raman-spectroscopy (LTRS) system in this investigation. A low power diode laser at 785 nm was used for both laser optical trapping of single transgenic cells and excitation for near-infrared Raman spectroscopy of the nuclei of synchronized cells, which were treated as single organic particles, at t...
متن کاملEvaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers.
Laser tweezers Raman spectroscopy was used to detect the cellular response of Escherichia coli cells to penicillin G-streptomycin and cefazolin. Time-dependent intensity changes of several Raman peaks at 729, 1,245, and 1,660 cm(-1) enabled untreated cells and cells treated with the different antibiotic drugs to be distinguished.
متن کاملNear-infrared Raman spectroscopy of single optically trapped biological cells.
We report on the development and testing of a compact laser tweezers Raman spectroscopy (LTRS) system. The system combines optical trapping and near-infrared Raman spectroscopy for manipulation and identification of single biological cells in solution. A low-power diode laser at 785 nm was used for both trapping and excitation for Raman spectroscopy of the suspended microscopic particles. The d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 81 9 شماره
صفحات -
تاریخ انتشار 2009